Search results

1 – 3 of 3
Article
Publication date: 29 January 2020

Yacheng Wang, Peibo Li, Yuegang Liu, Yize Sun and Liuyuan Su

In 3D additive screen printing with constant snap-off, the inhomogeneous screen counterforce will influence the printing force and reduce the printing quality. The purpose of this…

Abstract

Purpose

In 3D additive screen printing with constant snap-off, the inhomogeneous screen counterforce will influence the printing force and reduce the printing quality. The purpose of this paper is to study the relationship between scraper position, snap-off and screen counterforce and develop a variable snap-off curve for 3D additive screen printing to improve the printing quality.

Design/methodology/approach

An experiment was carried out; genetic algorithm (GA) optimization theoretical model, backpropagation neural network regression model and least square support vector machine regression model were established to study the relationship between scraper position, snap-off and screen counterforce. The absolute errors of counterforce of three models with the experiment results were less than 1.5 N, which was tolerated and the three models were considered valid. The comparison results showed that GA optimization theoretical model performed best.

Findings

The results suggest that GA optimization theoretical model performed best to represent the relationship, and it was used to develop a variable snap-off curve. With the variable snap-off curve in 3D additive screen printing, the inhomogeneous screen counterforce was weakened and the printing quality was improved.

Originality/value

In printing production, the variable snap-off curve in 3D additive screen printing helps improve the printing quality; this study is of prime importance to the 3D additive screen printing.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 26 September 2008

Zhuang Fu, Liang Zou, Yuexin Wu, Peibo Li and Yanzheng Zhao

This paper aims to propose an automatic coating and fastening robot (ACFR) of space solar module (SSM) to solar panel substrate.

Abstract

Purpose

This paper aims to propose an automatic coating and fastening robot (ACFR) of space solar module (SSM) to solar panel substrate.

Design/methodology/approach

Describes the detailed manufacturing process of space solar cell arrays (SSCA), and gives an ACFR for SSM. Designs an automatic coating and fastening mechanism and a control system. Furthermore, establishes the “zigzag”, the “umbrella” and the Voronoi‐based “ring” path models of the coating path using syringes.

Findings

The robot is effective for the bubble‐free manufacture of SSCA in nonvacuum environment. The robot with three coating path models can control the thickness of adhesive layer on the back of SSM, and the fastening force to the solar panel substrate with high productivity. The experimental results have proved the validity of this robot in the SSCA's manufacture.

Practical implications

The robot as a novel industrial equipment can improve the product quality and the reliability of SSCA to a certain extent.

Originality/value

The robot has potential applications in the SSCA assembly. It will change the traditional handworking status in the future.

Details

Assembly Automation, vol. 28 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 8 March 2010

Peibo Li, Z. Fu and Yanzheng Zhao

The purpose of this paper is to present a serial produced industrial robot for thin‐type space solar cells (SSC), which is applied to perform the bonding process of SSC.

Abstract

Purpose

The purpose of this paper is to present a serial produced industrial robot for thin‐type space solar cells (SSC), which is applied to perform the bonding process of SSC.

Design/methodology/approach

An optimized process of adhesive coating and bonding for SSC is designed, based on an analysis of hydromechanics model. In order to perform the process, a novel robot is developed, which mainly consists of a three‐axis Cartesian coordinates' motion platform, coating‐and‐bonding device, solar cell and glass cover orientation plate, control system, pneumatic system, constant temperature module, and industrial personal computer software. The coating and bonding operation is based on the three‐axis Cartesian coordinates' motion and the help of pneumatic system.

Findings

Compared with the experimental prototype and handwork, the robot is more effective and reliable for the bonding process of the thin‐type solar cells.

Originality/value

The robot is very useful to realize automatic production of SSC.

Details

Industrial Robot: An International Journal, vol. 37 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 3 of 3